
Continuously Distributed Path Estimation by Using DIV

K. Anusha# R. Lakshmi Tulasi*

#Department of Computer Science & engineering
QISCET, India

*Professor& HOD, Dept of CSE
QISCET, India

Abstract— Paths with loops, even transient ones ,can pose
significant stability problems in networks. Some earlier
approaches like Shortest path routing (Dijkstra),Flooding, Flow-
based routing, Distance vector routing(OSPF),Link state
routing(Bellmen-Ford),Hierarchical routing, Broadcast routing,
Multicast routing have problems maintaining the balance
between node delays and link delays. We present a new
algorithm, Distributed Path Computation with Intermediate
Variables (DIV) that guarantees that no loops, transient or
steady-state, can never downgrade network dynamics. Besides
its ability to operate with existing distributed routing algorithms
to guarantee that the directed graph induced by the routing
decisions stays acyclic by handling multiple overlapping
updates and packet losses and frequency of synchronous
updates, and provably outperforms earlier approaches in
several key metrics. In addition, when used with distance-vector
style path computation algorithms, the main drawbacks of
Distance Vector are limited scalability due to slow convergence
time, bandwidth consumption and routing loops. DIV also
prevents counting-to-infinity; hence further improving
convergence. Simulation quantifying its performance gains is
also presented.
Keywords— DIV, Distance-vector routing, loop-free routing,
flow-based routing

I. INTRODUCTION
The multiple autonomous computers that communicate
through computers is called Distributed computing.In this,
the systems interact with each other to reach the destination.
The computer program that runs in the distributed program
and distributed programming. This will solve the
computational problems which refer to Distributed
computing. Many routing protocols have been proposed for
MANETs, e.g., DSDV and OLSR. In both approaches, nodes
choose successor (next-hop) nodes for each destination based
only on local information, with the objective that the chosen
paths to the destination be efficient in an appropriate sense—
e.g., having the minimum cost.
Inconsistent information at different nodes can have dire
consequences that extend beyond not achieving the desired
efficiency. Of particular significance is the possible formation
of transient routing loops,1 which can severely impact
network performance, especially in networks with no or
limited loop mitigation mechanisms, e.g., no Time-to-Live
(TTL) field in packet headers or a TTL set to a large value.
where a routing loop often triggers network-wide congestion.
The importance of avoiding Transient
routing loops remains a key requirement for path computation
in both existing and emerging network technologies, e.g., see

[1] for recent discussions, and is present to different extents
in both link-state and distance-vector algorithms.
 Link-state algorithms (e.g., OSPF [2]) decouple information
dissemination and path computation, so that routing loops, if
any, are short-lived, but the algorithms overhead is high in
terms of communication (broadcasting updates), storage
(maintaining a full network map), and computation
(Changes anywhere in the network trigger computations at all
nodes). By combining information dissemination and path
computation, distance vector algorithms (cf. RIP [3], EIGRP
[4]) avoid several of these disadvantages, which make them
attractive, especially in situations of frequent local topology
changes and/or when high control overhead is undesirable.
However, they can suffer from frequent and long lasting
routing loops and slower convergence (cf. the counting-to-
infinity problem [5]). Thus, making distance-vector based
solutions attractive, calls for overcoming these problems.

II. BACKGROUND WORK
ROUTING LOOPS AND COUNTING-TO-INFINITY
We begin our discussion with a simple classical example of a
routing loop and counting-to-infinity
which illustrates that these problems can occur quite
frequently as they neither require complex topologies nor an
unlikely sequence of events. Consider the network shown in
Fig. 1(a). In this figure, the nodes compute a shortest path to
the destination D. The cost of each link is shown next to the
link and the cost-to-destination of the nodes are shown in
parenthesis next to the node. We assume that nodes use
poison reverse; i.e., each node reports an infinite cost-to-
destination to its successor node. Thus, node C believes that
node A can reach the destination at a cost of 3 whereas node
B cannot reach the destination since node B reported a
distance of infinity to node C.

Fig. 1. A simple example of counting-to-infinity problem

K. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 273 - 277

www.ijcsit.com 273

Now suppose that the link between nodes C and D goes
down, as shown in Fig. 1(b). Node C detects this change and
attempts to find a new successor. According to the
information node C has at that moment, node A is its best
successor. So node C chooses node A as its successor, reports
a distance of infinity to node A and distance of 6 to node B.
As Fig. 1(b) shows, a routing loop has been created due to
node C’s choice of successor. To see how counting-to-
infinity takes place in this example, note that due to poison
reverse, node B believes that the destination is unreachable
through node A. Thus, when it receives the update from C
containing C’s new cost-to-destination as 6, node B simply
changes its own cost-to-destination to 7 keeping node C as its
successor, reports unreachability to node C and its new cost,
7, to node A . This way, each node increases its cost to D by a
finite amount each time. So, unless a maximum diameter of
the graph is assumed (e.g., it is 6 in RIP) and the destination
declared unreachable once the cost reaches that value, the
computation never ends.

A. The Common Structure
The primary challenge in avoiding transient loops lies in
handling inconsistencies in the information stored across
nodes. Otherwise, simple approaches can guarantee loop-free
operations at each step [12, 14]. Most previous distance-
vector type algorithms free from transient loops and
convergence problems follow a common structure: Nodes
exchange update-messages to notify their neighbors of any
change in their own cost-to-destination (for any destination).
If the costto-destination decreases at a node, the algorithms
allow updating its neighbors in an arbitrary manner; these
updates are called local (asynchronous) updates. However,
following an increase in the cost-to-destination of a node,
these algorithms require that the node potentially update all
its upstream nodes before changing its current successor;
these are synchronous updates. The main drawbacks of
Distance Vector are limited scalability due to slow
convergence time, bandwidth consumption and routing loops.

B. Diffusing Update Algorithm (DUAL)
DUAL, a part of CISCO’s widely used EIGRP protocol, is
perhaps the best known algorithm. In DUAL, each node
maintains, for each destination, a set of neighbors called the
feasible successor set. The feasible successor set is computed
using a feasibility condition involving feasible distances at a
node. Several feasibility conditions are proposed in [8] that
are all tightly coupled to the computation of a shortest path.
For example, the Source Node Condition (SNC) defines the
feasible successor set to be the set of all neighbors whose
current cost-to-destination is less than the minimum cost-to-
destination seen so far by the node. A node can choose any
neighbor in the feasible successor set as the successor (next-
hop) without having to notify any of its neighbors and
without causing a routing loop regardless of how other nodes
in the network choose their successors, as long as they also
comply with this rule. If the neighbor through which the cost-
to-destination of the node is minimum is in the feasible

successor set, then that neighbor is chosen as the successor. If
the current feasible successor set is empty of does not include
the best successor, the node initiates a synchronous update
procedure, known as a diffusing computation (cf. [15]), by
sending queries to all its neighbors and waiting for
acknowledgment before changing its successor. Multiple
overlapping updates—i.e., if a new link-cost change occurs
when a node is waiting for replies to a previous query—are
handled using a finite state machine to process these multiple
updates sequentially.

C. Loop Free Invariance (LFI) Algorithms
A pair of invariances, based on the costto- destination of a
node and its neighbors, called Loop Free Invariances (LFI)
are introduced in [9] and it is shown that if nodes maintain
these invariances, then no transient loops can form (cf.
Section 3.2). Update mechanisms are required to maintainthe
LFI conditions: [9] introduces Multiple-path Partial-topology
Dissemination Algorithm (MPDA) that uses a link-state type
approach whereas [10] introduces Multipath Distance Vector
Algorithm (MDVA) that uses a distance vector type
approach. Similar to DUAL, MDVA uses a diffusing update
approach to increase its cost-to-destination, thus it also
handles multiple overlapping cost-changes sequentially. The
primary contribution of LFI based algorithms such as
MDVA or MPDA is a unified framework applicable to both
link-state and distance-vector type approaches and multipath
routing.

D. Comparative Merits of Previous Algorithms
DUAL supersedes the other algorithms in terms of
performance. Specifically, the invariances of MPDA and
MDVA are based directly on the cost of the shortest path.
Thus, every increase in the cost of the shortest path triggers
synchronous updates in MDVA or MPDA. In constrast, the
feasibility conditions of DUAL are indirectly based on the
cost of the shortest path. Consequently, an increase in the cost
of the shortest path may not violate the feasibility condition
of DUAL, and therefore may not trigger synchronized
updates—an important advantage over MDVA or MPDA.
Because of the importance of this metric, we consider DUAL
the benchmark against which to compare DIV (cf. Section 4).
DIV combines advantages of both DUAL and LFI. DIV
generalizes the LFI conditions, is not restricted to shortest
path computations and, as LFI-based algorithms, allows for
multipath routing. In addition, DIV allows for using a
feasibility condition that is strictly more relaxed than that of
DUAL, hence triggering synchronous updates less frequently
than DUAL (and consequently, than MPDA or MDVA) as
well as limiting the propagation of any triggered synchronous
updates. The update mechanism of DIV is simple and
substantially different from that of previous algorithms, and
allows arbitrary packet reordering/losses. Last but not least,
unlike DUAL or LFI algorithms, DIV handles multiple
overlapping cost-changes simultaneously without additional
efforts resulting in simpler implementation and potentially
faster convergence.

K. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 273 - 277

www.ijcsit.com 274

III. DIV
A. Overview
 DIV lays down a set of rules on existing path computation
algorithms to ensure their loop-free operation at each instant.
This rule-set is not predicated on shortest path computation,
so DIV can be used with other path computation algorithms
as well. For each destination, DIV assigns a value to each
node in the network. To simplify our discussion and notation,
we fix a particular destination and speak of the value of a
node. The values could be arbitrary—hence the independence
of DIV from any underlying path computation algorithm.
However, usually the value of a node will be related to the
underlying objective function that the algorithm attempts to
optimize and the network topology. Some typical value
assignments include: (i) in shortest path computations, the
value of a node could be its cost-to-destination; (ii) as in
DUAL, the value could be the minimum cost-to-destination
seen by the node from time t = 0; (iii) as in TORA [13], the
value could be the height of the node; etc. As in previous
algorithms, the basic idea of DIV is to allow a node to choose
a neighbor as successor only if the value of that neighbor is
less than its own value: this is called the decreasing value
property of DIV, which ensures that routing loop can never
form. The hard part is enforcing the decreasing value
property when network topology changes. Node values must
be updated in response to changes to enable efficient path
selection. However, how does a node know the current value
of its neighbors to maintain the decreasing value property?
Clearly, nodes update each other about their own current
value through update messages. Since update messages are
asynchronous, information at various nodes may be
inconsistent, which may lead to the formation of loops. This
is where the non-triviality of DIV lies: it lays down specific
update rules that guarantee that loops are never formed even
if the information across nodes is inconsistent.

B. Description of DIV
 There are four aspects to DIV: (i) the variables stored at
the nodes, (ii) two ordering invariances that each node
maintains, (iii) the rules for updating the variables, and (iv)
two semantics for handling non-ideal message deliveries
(such as packet loss or reordering). A separate instance of
DIV is run for each destination, and we focus on a particular
destination. The Intermediate Variables suppose that a node x
is a neighbor of node y. These two nodes maintain
intermediate variables to track the value of each other. There
are three aspects of each of these variables: whose value is
this? who believes in that value? And where is it stored?
Accordingly, we define V (x;y|x) to be the value of node x as
known (believed) by node y stored in node x; similarly V(y;
x|x) denotes value of node y as known by node x stored in
node x. Thus, node x with n neighbors, {y1,y2,…, yn}, it
stores, for each destination:
1. its own value, V (x; x|x);
2. the values of its neighbors as known to itself,
V(yi x|x) [yiЄ{y1; y2; : : : ; yn}],
3. and the value of itself as known to its neighbors

V (x;yi|x) [yi Є {y1, y2, . . . , yn}].
That is, 2n+1 values for each destination. The variables V (yi;
x|x) and V (x; yi|x) are called intermediate variables since
they endeavor to reflect the values V (yi; yi|yi) and V (x;
x|x), respectively. In steady state, DIV ensures that
(x;x|y)=V(x;yi)=V(x;yi|yi).
 The Invariances: DIV requires each node to maintain at all
times the following two invariances based on its set of
locally stored variables.
Invariance 1: The value of a node is not allowed to be more
than the value the node thinks is known to its neighbors. That
is
 V (x; x|x) ≤ V (x; yi|x) for each neighbor yi. (1)
 Invariance2: A node x can choose one of its neighbors y as a
successor only if the value of y is less than the value of x as
known by node x; i.e., if node y is the successor of node x,
then
 V (x; x|x) > V (y; x|x). (2)
 Thus, due to Invariance 2, a node x can choose a successor
only from its feasible successor set {yi|V(x;x|x) > V (yi;x|x)}.
The two invariances reduces to the LFI conditions if the value
of a node is chosen to be its current cost-to-destination.
Update Messages and Corresponding Rules: There are two
operations that a node needs to perform in response to
network changes: (i) decreasing its value and (ii) increasing
its value. Both operations need notifying neighboring nodes
about the new value of the node. DIV uses two corresponding
update messages, Update::Dec and Update:: Inc, and
acknowledgment (ACK) messages in response to Update::Inc
(no ACKs are needed for Update::Dec). Both Update::Dec
and Update::Inc contain the new value (the destination), and a
sequence number5. The ACKs contain the sequence number
and the value (and the destination) of the corresponding
Update::Inc message. DIV lays down precise rules for
exchanging and handling these messages which we now
describe.
Decreasing Value: Decreasing value is the simpler operation
among the two. The following rules are used to decrease the
value of a node x to a new value V0. Node x first
simultaneously decreases the variables V (x; x|x) and the
values V (x; yi|x) I =1,2,…,n, to V0, Node x then sends an
Update::Dec message to all its neighbors that contains the
new value V0. Each neighbor yi of x that receives an
Update::Dec message containing V0 as the new value updates
V (x;yi|yi) to V0.
Increasing Value: In the decrease operation a node first
decreases its value and then notifies its neighbors; in the
increase operation, a node first notifies its neighbors (and
wait for their acknowledgments) and then increases its value.
In particular, a node x uses the following rules to increase its
value to V1: Node x first sends an Update::Inc message to all
its neighbors. Each neighbor yi of x that receives an
Update::Inc message sends an acknowledgment (ACK) when
able to do so according to the rules explained in details below
(Section 3.2). When yi is ready to send the ACK, it first
modifies V (x; yi|yi), changes successor if necessary (since
the feasible successor set may change), and then sends the

K. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 273 - 277

www.ijcsit.com 275

ACK to x; the ACK contains the sequence number of the
corresponding Update::Inc message and the new value of V
(x; yi|yi). Note that it is essential that node yi changes
successor, if necessary, before sending the ACK. When node
x receives an ACK from its neighbor yi, it modifies V (x;
yi|x) to V1.At any time, node x can choose any value V (x;
x|x) ≤ V (x; yi||x), I =1,2,…,n.
Rules for Sending Acknowledgment: Suppose node yi
received an Update::Inc message from node x. Recall that
node yi must increase V (x; yi|yi) before sending an ACK.
However, increasing V (x; yi|yi) may remove node x from the
feasible successor set at node yi. If node x is the only node in
the feasible successor set of node yi, node yi may lose its path
if V (x; yi|yi) is increased without first increasing V (yi; yi|yi).
Node yi then has two options: (i) first increase V (yi; yi|yi),
increase V (x; yi|yi), and then send the ACK to node x; or (ii)
increase V(x; yi|yi), send ACK to node x, and then increase
V(yi; yi|yi). We call option (i) the normal mode, and option
(ii) the alternate mode. In the normal mode, node yi keeps the
old path while it awaits ACKs from its neighbors before
increasing V(yi;yi|yi), since it keeps x in the feasible
successor set until its own value is adjusted appropriately.

IV. PERFORMANCE EVALUATION
This section presents simulation results comparing the
performances of DIV (with normal mode used with DBF to
compute shortest paths) in terms of routing loops;
convergence times and frequency of synchronous updates
against DUAL (cf. Section 2). The performance of DBF
without DIV is also presented as a reference. The simulations
are performed on random graphs with fixed average degree of
5. The numbers of nodes are varied from 10 to 90 in
increments of 10. For each graph-size, 100 random graphs are
generated. Link costs are drawn from a bi-modal distribution:
with probability 0.5 a link cost is uniformly distributed in
[0,1]; and with probability 0.5 it is uniformly distributed in
[0,100]. For each graph, 100 random link-cost changes are
introduced, again drawn from the same bi-modal distribution.
All three algorithms are run on the same graphs and sequence
of changes. Processing time of each message is random: it is
2 s with probability 0.0001, 200 ms with probability 0.05, and
10 ms otherwise.

 Fig. 2. Mean convergence time

Fig. 2. shows average convergence times—the time from a
cost change to when no more updates are exchanged—for all
three algorithms as the size of the graphs varies. The vertical
bars show standard deviations. Both DIV and DUAL
converge faster than DBF; however, DIV performs better,
especially for larger graphs. This is because DIV’s conditions
are satisfied more easily, so that synchronous updates often
complete earlier (recall that a node with a feasible neighbor
replies immediately). the fraction of times the condition of
DIV is satisfied given that SNC is not satisfied; this fraction
exceeds 80% for larger graphs.

V. CONCLUSION
Distance-vector path computation algorithms are attractive
candidates not only for shortest path computations, but also in
several important areas involving distributed path
computations due to their simplicity and scalability.
Leveraging those benefits, however, calls for eliminating
several classical drawbacks such as transient loops and slow
convergence. The algorithm proposed in this paper, DIV,
meets these goals, and which unlike earlier solutions is not
limited to shortest path computations. In addition, even in the
context of shortest path computations, DIV outperforms
earlier approaches in several key performance metrics, while
also providing greater operational flexibility, e.g., in handling
lost or out-of-order messages. Given these many benefits and
the continued and growing importance of distributed path
computations, we believe that DIV can play an important role
in improving and enabling efficient distributed path
computations.

REFERENCES
[1] P. Francois, C. Filsfils, J. Evans, and O. onaventure, “Achieving sub-

second IGP convergence in large IP networks,” ACM SIGCOMM
Computer Communication Review, July 2005.

[2] J. Moy, “OSPF version 2,” Internet Engineering Task Force, RFC
2328, Apr. 1998. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc2328.txt

[3] G. Malkin, “RIP version 2,” Internet Engineering Task Force, RFC
2453, Nov. 1998. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc2453.txt

[4] R. Albrightson, J. J. Garcia-Luna-Aceves, and J. Boyle, “EIGRP–A
fast routing protocol based on distance vectors,” in Proceedings of
Network/Interop, Las Vegas, NV, May 1994.

[5] D. Bertsekas and R. Gallager, Data Networks, 2nd ed. Prentice Hall,
1991.

[6] P. M. Merlin and A. Segall, “A failsafe distributed routing protocol,”
IEEE Transactions on Communications, vol. COM-27, no. 9, pp. 1280–
1288, September 1979.

[7] J. M. Jaffe and F. M. Moss, “A responsive routing algorithm for
computer networks,” IEEE Transactions on Communications, vol.
COM-30, no. 7, pp. 1768–1762, July 1982.

[8] J. J. Garcia-Lunes-Aceves, “Loop-free routing using diffusing
computations,” IEEE/ACM Transactions on Networking, vol. 1, no. 1,
pp. 130–141, February 1993.

[9] S. Vutukury and J. J. Garcia-Luna-Aceves, “A simple approximation to
minimum-delay routing,” in Proceedings of ACM SIGCOMM,
Cambridge, MA, September 1999.

[10] “MDVA: A distance-vector multipath routing protocol,” in Proceedings
of IEEE INFOCOM, Anchorage, AK, April 2001.

[11] K. Elmeleegy, A. L. Cox, and T. S. E. Ng, “On count-to-infinity
induced forwarding loops in Ethernet networks,” in Proceedings of
IEEE INFOCOM, Barcelona, Spain, April 2006.

K. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 273 - 277

www.ijcsit.com 276

[12] E. Gafni and D. Bertsekas, “Distributed algorithms for generating
loop-free routes in networks with frequently changing topology,”
IEEE/ACM Transactions on Communications, January 1981.

[13] V. D. Park and M. S. Corson, “A highly adaptive distributed routing
algorithm for mobile wireless networks,” in Proceedings of IEEE
INFOCOM, 1997. [Online].

[14] R. G. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Transactions on Communications, January 1977.

[15] E. W. Dijkstra and C. S. Scholten, “Termination detection for diffusing
computations,” Information Processing Letters, vol. 11, no. 1, pp. 1–4,
August 1980.

[16] S. Ray, R. Gu´erin, and S. Rute, “Distributed path computation without
transient loops: An intermediate variables approach,” University of
Pennsylvania, Tech. Rep., 2006. [Online]. Available:

�http://www.seas.upenn.edu/ saikat/loopfree.pdf

K. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 273 - 277

www.ijcsit.com 277

